Calculer \(\lim\limits_{x \rightarrow 0} \frac{1-\cos (4 x)}{\sin ^{2}(7 x)}\)
Curiosité factorielle
- \(\frac{20 ! \: \cdot \: 7 !}{6 ! \: \cdot \: 21 !}=\frac{207}{621}=\frac13\)
- \(\frac{175 ! \: \cdot \: 56 !}{55 ! \: \cdot \: 176 !}=\frac{17556}{55176}=\frac{7}{12}\)
- \(\frac{1500 ! \: \cdot \: 475 !}{474 ! \: \cdot \: 1501 !}=\frac{1500475}{4741501}=\frac{25}{79}\)
- \(\frac{29600 !\: \cdot \: 9361 !}{9360 ! \: \cdot \: 29601 !}=\frac{296009361}{936029601}=\frac{37}{117}=0,3162393162 \cdots\)
Calculer …
\(f(\frac12)\) sachant que \[\ f(x)=\sum_{n=0}^{\infty}\left(2 n+n^{2}\right) x^{n}\]
Mathpix Snip
Un outil indispensable pour générer le code latex de n’importe quel formule mathématique affichée à l’écran.
Source : Mathpix Snip
Les formules liées au crédit
Source : Les formules liées au crédit
Octogone, carré et arctangente
Il suffit de trouver \(\alpha\) en radian et sous forme fractionnaire.
\documentclass[border=5mm]{standalone} \usepackage{tkz-euclide} \usetkzobj{all} \begin{document} \begin{tikzpicture} \tkzDefPoint(0,0){O} \foreach[count=\i] \ANG in {22.5,67.5,112.5,157.5,202.5,247.5,292.5,337.5} { \tkzDefPoint({5*cos(\ANG*pi/180)},{5*sin(\ANG*pi/180)}){P\i} } \tkzDrawPoints[color=red,fill=white,size=7](P1,P2,P3,P4,P5,P6,P7,P8) \tkzInterLL(P1,P8)(P6,P7) \tkzGetPoint{I} \tkzDefSquare(P1,I) \tkzGetPoints{C}{D} \tkzDrawPolygon[color=black,ultra thick](P1,D,C,I) \tkzDrawPolygon[color=magenta, ultra thick](P7,P8,C) \tkzDrawPolygon[color=red,ultra thick](P1,P2,P3,P4,P5,P6,P7,P8) \tkzMarkAngle[fill=magenta!35,size=2.8cm,opacity=.5](P8,C,P7) \tkzLabelAngle[pos = 2.3](P8,C,P7){\color{black}{\mbox{\Large$\alpha$}}} \end{tikzpicture} \end{document}
Tangentes dans un triangle
Code source latex
\documentclass[border=5mm]{standalone} \usepackage{tkz-euclide} \usetkzobj{all} \begin{document} \begin{tikzpicture} \tkzSetUpPoint[shape = circle,color = black,size = 5,fill = white] \tkzInit[xmin=0,ymax=6] \tkzClip[space=.5] \tkzDefPoint(0,0){B}\tkzDefPoint(-1,0){O} \tkzDefPoint(70:5.5){A} \tkzDefPointBy[projection= onto O--B](A) \tkzGetPoint{H} \tkzDefMidPoint(A,H) \tkzGetPoint{H'} \tkzDefLine[orthogonal=through A](B,H') \tkzInterLL(A,tkzPointResult)(B,H) \tkzGetPoint{C} \tkzDefPointBy[projection= onto A--C](B) \tkzGetPoint{H''} \tkzLabelPoints[above](A) \tkzLabelPoints[below](B,C) \tkzDrawSegment[style=dashed](A,H) \tkzDrawSegment[style=dashed](B,H'') \tkzMarkSegments[mark=s||,color=red](A,H' H',H) \tkzDrawPolygon(A,B,C) \tkzMarkRightAngle(A,H,C) \tkzMarkRightAngle(B,H'',C) \tkzDrawPoints(A,B,C,H,H',H'') \tkzMarkAngle[fill= yellow,size=1cm,opacity=.3](C,B,A) \tkzMarkAngle[fill= orange,size=1cm,opacity=.3](A,C,B) \tkzLabelAngle[pos = .7](C,B,A){\color{black}{\mbox{\Large$\beta$}}} \tkzLabelAngle[pos = .7](A,C,B){\color{black}{\mbox{\Large$\gamma$}}} \tkzText[draw=brown](3,6){Montrer que : $\tan \beta \cdot \tan \gamma = 2$} \end{tikzpicture} \end{document}
fichier pdf : Trigo28juin2018
L’intégrale d’une puissance de la fonction tangente
On montre que $$\int \:\tan ^n\left(x\right)\; \mathrm{d}x=\frac{\tan ^{n-1}\left(x\right)}{n-1}-\int \tan ^{n-2}\left(x\right)\; \mathrm{d}x$$
Etapes :
\begin{align*}
\int \:\tan ^n\left(x\right)\; \mathrm{d}x
&= \int \tan ^{n-2}\left(x\right) \cdot \tan ^{2}\left(x\right)\; \mathrm{d}x \\
&= \int \tan ^{n-2}\left(x\right) \cdot \left(\frac{1}{\cos^2x}-1\right)\; \mathrm{d}x \\
&= \int \frac{\tan^{n-2}(x)}{\cos^2(x)} \; \mathrm{d}x \; – \int\tan^{n-2}(x)\; \mathrm{d}x \\
\end{align*}
On pose \(u=\tan x\) et \(\displaystyle \mathrm{d}u = \frac{1}{\cos^2x}\mathrm{d}x\)
Par substitution, le premier terme du résultat précédent devient :
\begin{align*}
\int \frac{\tan^{n-2}(x)}{\cos^2(x)} \; \mathrm{d}x
&= \int u^{n-2}(x) \cdot u'(x) \; \mathrm{d}x \\
&= \int u^{n-2} \; \mathrm{d}u \\
&= \frac{u^{n-1}}{n-1} + C \\
&= \frac{\tan^{n-1}(x)}{n-1} +C
\end{align*}
Finalement : $$\int \:\tan ^n\left(x\right)\; \mathrm{d}x = \frac{\tan^{n-1}(x)}{n-1} \: – \: \int \tan ^{n-2}\left(x\right)\; \mathrm{d}x$$
Exemple : \begin{align*}
\int \:\tan ^4\left(x\right)\; \mathrm{d}x
&= \frac{\tan^{3}(x)}{3} \: – \: \int \tan ^{2}\left(x\right)\; \mathrm{d}x \\
&= \frac{\tan^{3}(x)}{3} \: – \: \int \left[\frac{1}{\cos^{2}}\left(x\right) – 1 \right] \; \mathrm{d}x \\
&= \frac{\tan^{3}(x)}{3} \: – \: \tan(x) \: + \: x \: + \: C
\end{align*}
Longueur de spirale
Dans un carré de côté 1, on trace un carré dont les sommets sont situés au tiers des côtés du carré initial, et on répète indéfiniment l’opération. On demande de calculer la longueur de la spirale dont les premiers segments sont tracés en rouge ci-contre.
Fichier pdf – Source latex de la figure.
Il faut reprendre cette figure en ne dessinant que les premières itérations de sa construction. Cela permettra plus facilement de définir les différentes variables à mettre en relation.
Par ailleurs, la configuration géométrique du problème laisse penser qu’une suite géométrique se cache derrière le processus de raisonnement permettant d’aboutir à la solution finale.
On définit les sommets des carrés emboîtés par les lettres A,B,C et D. Plus précisément, en numérotant chaque carré, le carré numéro \(i\) aura pour sommets les points \(A_i\), \(B_i\), \(C_i\) et \(D_i\).
La longueur de la spirale rouge après n itérations est déterminée par \(L_n = \sum\limits_{i=1}^{n} u_i\)
Bon d’accord, mais que valent les \(u_i\) ? Comment les calculer ? Pour commencer notre investigation, on s’intéresse aux triangles rectangles \(A_iA_{i+1}D_{i+1}\) pour y trouver une relation entre \(u_{i+1}\) et \(u_{i}\). On trouve :
$$\left(\left(1+k\right)\cdot u_{i+1}\right)^2 = \left( 1+k^2\right) \cdot u_i^2 $$
avec \(k=\frac{1}{u_1}-1\)
Comme \(u_{i}>0\), on a : $$u_{i+1}=\frac{\sqrt{1+k^2}}{1+k} \cdot u_{i}$$
Les \(u_{i}\) sont par conséquent les termes d’une suite géométrique de premier terme \(u_{i}\) et de raison \(q =\frac{\sqrt{1+k^2}}{1+k}\)
Remarque : on a aussi \(q =\sqrt{2 \cdot u_1^2-2 \cdot u_1+1}\)
La somme des n premiers termes d’une suite géométrique est donnée par $$S_n=u_1\cdot\frac{1-q^{n}}{1-q} \text{ avec } q\neq 1$$
On applique cette formule en reprenant les données de l’énoncé : \(u_1=1/3\) et donc \(k=2\)
$$L_n = \frac13 \cdot \frac{1-\left(\frac{\sqrt{5}}{3}\right)^n}{1-\frac{\sqrt{5}}{3}}$$
Comme la raison de cette suite est comprise entre -1 et 1, \(L_n\) converge vers $$L=\frac13 \cdot \frac{1}{1-\frac{\sqrt{5}}{3}} = \frac{3+\sqrt{5}}{4}$$
La spirale infinie rouge est donc de longueur finie \(\frac{3+\sqrt{5}}{4}\)
Guide Express et Pratique de LaTeX
Une anti-seche en deux pages pour une intro rapide ou un aide mémoire des différentes fonctions. A imprimer en recto verso par exemple.
- Source : Guide express LaTeX
- Pdf : Guide express LaTeX
- Source : A quick guide to LaTeX
- Pdf : A quick guide to LaTeX
– Source: Dave Richeson (divisbyzero.com), Dickinson College
— Version francaise par Vincent Pantaloni, prof.pantaloni.free.fr – Traduction, correction et adaptation à la typographie française.